Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood Rev ; : 100995, 2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-2269063

ABSTRACT

Increasing evidence suggests that activation of the complement system plays a key role in the pathogenesis and disease severity of Coronavirus disease 2019 (COVID-19). We used a systematic approach to create an overview of complement activation in COVID-19 based on histopathological, preclinical, multiomics, observational and clinical interventional studies. A total of 1801 articles from PubMed, EMBASE and Cochrane was screened of which 157 articles were included in this scoping review. Histopathological, preclinical, multiomics and observational studies showed apparent complement activation through all three complement pathways and a correlation with disease severity and mortality. The complement system was targeted at different levels in COVID-19, of which C5 and C5a inhibition seem most promising. Adequately powered, double blind RCTs are necessary in order to further investigate the effect of targeting the complement system in COVID-19.

2.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1534091

ABSTRACT

Myopia is the second leading cause of visual impairment globally. Myopia can induce sight-threatening retinal degeneration and the underlying mechanism remains poorly defined. We generated a model of myopia-induced early-stage retinal degeneration in guinea pigs and investigated the mechanism of action. Methods: The form-deprivation-induced myopia (FDM) was induced in the right eyes of 2~3-week-old guinea pigs using a translucent balloon for 15 weeks. The left eye remained untreated and served as a self-control. Another group of untreated age-matched animals was used as naïve controls. The refractive error and ocular biometrics were measured at 3, 7, 9, 12 and 15 weeks post-FDM induction. Visual function was evaluated by electroretinography. Retinal neurons and synaptic structures were examined by confocal microscopy of immunolabelled retinal sections. The total RNAs were extracted from the retinas and processed for RNA sequencing analysis. Results: The FDM eyes presented a progressive axial length elongation and refractive error development. After 15 weeks of intervention, the average refractive power was -3.40 ± 1.85 D in the FDM eyes, +2.94 ± 0.59 D and +2.69 ± 0.56 D in the self-control and naïve control eyes, respectively. The a-wave amplitude was significantly lower in FDM eyes and these eyes had a significantly lower number of rods, secretagogin+ bipolar cells, and GABAergic amacrine cells in selected retinal areas. RNA-seq analysis showed that 288 genes were upregulated and 119 genes were downregulated in FDM retinas compared to naïve control retinas. In addition, 152 genes were upregulated and 12 were downregulated in FDM retinas compared to self-control retinas. The KEGG enrichment analysis showed that tyrosine metabolism, ABC transporters and inflammatory pathways were upregulated, whereas tight junction, lipid and glycosaminoglycan biosynthesis were downregulated in FDM eyes. Conclusions: The long-term (15-week) FDM in the guinea pig models induced an early-stage retinal degeneration. The dysregulation of the tyrosine metabolism and inflammatory pathways may contribute to the pathogenesis of myopia-induced retinal degeneration.


Subject(s)
Inflammation/genetics , Myopia/genetics , Retinal Degeneration/genetics , Tyrosine/metabolism , Animals , Disease Models, Animal , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Guinea Pigs , Humans , Inflammation/pathology , Metabolic Networks and Pathways/genetics , Myopia/complications , Myopia/pathology , RNA-Seq , Retina/metabolism , Retina/pathology , Retinal Degeneration/etiology , Retinal Degeneration/pathology , Tyrosine/genetics
3.
Expert Opin Ther Targets ; 25(6): 423-433, 2021 06.
Article in English | MEDLINE | ID: covidwho-1281815

ABSTRACT

INTRODUCTION: Defibrotide (DF) is a polyribonucleotide with antithrombotic, pro-fibrinolytic, and anti-inflammatory effects on endothelium. These effects and the established safety of DF present DF as a strong candidate to treat viral and post-infectious syndromes involving endothelial dysfunction. AREAS COVERED: We discuss DF and other therapeutic agents that have the potential to target endothelial components of pathogenesis in viral and post-infectious syndromes. We introduce defibrotide (DF), describe its mechanisms of action, and explore its established pleiotropic effects on the endothelium. We describe the established pathophysiology of Coronavirus Disease 2019 (COVID-19) and highlight the processes specific to COVID-19 potentially modulated by DF. We also present influenza A and viral hemorrhagic fevers, especially those caused by hantavirus, Ebola virus, and dengue virus, as viral syndromes in which DF might serve therapeutic benefit. Finally, we offer our opinion on novel treatment strategies targeting endothelial dysfunction in viral infections and their severe manifestations. EXPERT OPINION: Given the critical role of endothelial dysfunction in numerous infectious syndromes, in particular COVID-19, therapeutic pharmacology for these conditions should increasingly prioritize endothelial stabilization. Several agents with endothelial protective properties should be further studied as treatments for severe viral infections and vasculitides, especially where other therapeutic modalities have failed.


Subject(s)
COVID-19/complications , Endothelium, Vascular/drug effects , Polydeoxyribonucleotides/pharmacology , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , COVID-19/physiopathology , COVID-19/virology , Endothelium, Vascular/physiopathology , Humans , Polydeoxyribonucleotides/therapeutic use , SARS-CoV-2/isolation & purification , Post-Acute COVID-19 Syndrome
4.
3 Biotech ; 10(11): 479, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-885141

ABSTRACT

The complement system is a stakeholder of the innate and adaptive immune system and has evolved as a crucial player of defense with multifaceted biological effects. Activation of three complement pathways leads to consecutive enzyme reactions resulting in complement components (C3 and C5), activation of mast cells and neutrophils by anaphylatoxins (C3a and C5a), the formation of membrane attack complex (MAC) and end up with opsonization. However, the dysregulation of complement cascade leads to unsolicited cytokine storm, inflammation, deterioration of alveolar lining cells, culminating in acquired respiratory destructive syndrome (ARDS). Similar pathogenesis is observed with the middle east respiratory syndrome (MERS), severe acquired respiratory syndrome (SARS), and SARS-CoV-2. Activation of the lectin pathway via mannose-binding lectin associated serine protease 2 (MASP2) is witnessed under discrete viral infections including COVID-19. Consequently, the spontaneous activation and deposits of complement components were traced in animal models and autopsy of COVID-19 patients. Pre-clinical and clinical studies evidence that the inhibition of complement components results in reduced complement deposits on target and non-target tissues, and aid in recovery from the pathological conditions of ARDS. Complement inhibitors (monoclonal antibody, protein, peptide, small molecules, etc.) exhibit great promise in blocking the activity of complement components and its downstream effects under various pathological conditions including SARS-CoV. Therefore, we hypothesize that targeting the potential complement inhibitors and complement cascade to counteract lung inflammation would be a better strategy to treat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL